

Mr. Robert Stone Hazardous Materials Specialist Humboldt County Health Department Division of Environmental Health 100 H Street, Suite 100 Eureka, California 95501 May 19, 2006

Re: Report of Findings for MTBE Vertical Delineation

Former Cash Oil Arcata 421 J Street, Arcata, CA HCDEH LOP No. 12302 Blue Rock Project No. NC-3

Dear Mr. Stone,

This report was prepared for Clyde Harvey by Blue Rock Environmental, Inc. (Blue Rock) and presents the results of recent soil and groundwater sampling activities for vertical delineation of MTBE at 421 J Street, Arcata, Humboldt County, California (site) (Figure 1).

In response to Blue Rock's *Closure Evaluation* dated February 27, 2006, the Humboldt County Department of Environmental Health (HCDEH) identified the only outstanding issue limiting site closure was the lack of vertical delineation of MTBE in soil and groundwater below the site, as indicated in their March 9, 2006 letter. Accordingly, Blue Rock submitted their *Workplan for Vertical Delineation* dated March 24, 2006, which proposed soil and groundwater sampling to assess the vertical extent of MTBE in soil and groundwater below the site. The HCDEH concurred with this workplan in a letter dated March 30, 2006. This report presents the results of the proposed work.

Background

Site Description

The former Cash Oil Arcata service station is located on the corner of J Street and Samoa Boulevard (State Highway 255) in Arcata, California (Figure 1), in an area of low topographic relief on the Arcata Bottoms.

Former Underground Storage Tanks

A gas station has occupied this site since approximately 1978. The Cash Oil Company began operating the station in 1989. In 1997, permission was granted by the HCDEH to upgrade the existing underground storage tanks (USTs). The UST system consisted of two (2) upgraded single-wall steel 10,000-gallon USTs and one (1) fiberglass 10,000-gallon UST. The USTs were located along the northern edge of the property and were plumbed to two (2) dispenser islands located in the center of the property (Figure 2). At the time of upgrade, the UST system was used to store and dispense unleaded gasoline.

In May 2000, Cash Oil Company sold the property and upgraded UST system to Golden Gate Petroleum of Martinez, California.

In January 2004, Beacom Construction (Beacom) of Fortuna, California, on behalf of Golden Gate Petroleum, removed the (3) 10,000-gallon USTs and associated fuel dispensers from the site.

On March 18, 2004, Beacom installed two (2) new 10,000-gallon USTs at the site. During the installation of these USTs monitoring well MW-1 was destroyed.

Discovery of Petroleum Release

In May 1997, during tank upgrade activities, soil and groundwater samples were collected from two borings (B-1 and B-2) that determined a release of petroleum had occurred from the UST system.

Site Investigation History

Subsurface investigation has been ongoing at the site since initial 1997. A total of approximately nine (9) borings (B-1 through B-3 and B-6 through B-11) have been drilled and seven (7) monitoring wells (MW-1 through MW-7) have been installed to date. Additionally, numerous soil and groundwater samples have been collected from boring, wells, and/or excavations through the course of corrective action at the site. Historical boring, well, and sample locations are shown on Figure 2, well construction data are summarized in Table 1, soil sample data are summarized in Table 2, and groundwater elevation and sample data are included in Table 3.

Petroleum Type Detected During Investigation

Through the course of investigation the following petroleum compounds have been detected in soil and/or groundwater samples: total petroleum hydrocarbons as gasoline (TPHg), benzene, toluene, ethylbenzene, xylenes (BTEX), methyl tert-butyl ether, tert-butanol, tert amyl methyl ether (MTBE, TBA, TAME). , methanol, and ethanol. The fuel additives methanol and ethanol have only been detected sporadically at low concentrations, and the additives di-isopropyl ether (DIPE) and ethyl tert-butyl ether (ETBE) have not been detected.

Summary of Hydrogeology

A total of approximately 15 individual borings (including temporary borings and those converted to wells) have been drilled and logged at the site. The maximum depth explored has been 20 feet bgs. Clays and silts have been logged mostly from baserock to the depth of 20 feet bgs. An isolated, thin bed (i.e. <2 ft thick) of sand was observed in MW-5 at a dept of 5 feet bgs. Additionally, sand was observed from 19 to 20 feet bgs in MW-5 and MW-7, but this sand was not observed in any of the other five wells drilled to 20 feet bgs. Based on currently available information, neither of these sands appear to be laterally continuous. Cross sections are shown on Figures 2a and 2b.

During drilling, groundwater has been first observed at depths ranging from approximately 5 to 10 feet bgs. Groundwater in the temporary borings and wells stabilizes around a depth of 5 feet bgs, with seasonal variations ranging from approximately 4 to 8 feet bgs.

Monitoring wells MW-1 through MW-7 have all been screened from 5 to 20 feet bgs. The monitoring wells appear to adequately monitor conditions of first encountered shallow groundwater in the silts and clays beneath the site.

Groundwater elevations from monitoring wells MW-1 through MW-7 were used to evaluate flow and gradient in the shallow water bearing zone since November 2001 (when installation of wells MW-5, 6, and 7 completed the current suite of wells) to November 2005. Groundwater elevations have ranged from approximately 8 to 12 feet msl (equating to depths of approximately 4 to 8 feet bgs). Groundwater flow during the 17 events evaluated has been consistently to the south-southeast at gradients ranging from approximately 0.005 to 0.015 ft/ft. This flow direction is consistent with local topography and toward the nearest surface water body (Arcata Marsh) located approximately 1,400 feet south of the site.

Summary of Remedial Activities

Clearwater Group (Clearwater) submitted a *Corrective Action Plan (CAP)*, dated May 10, 2002 to the HCDEH. The *CAP* presented a summary of the hydrogeology and contamination. The report evaluated remedial alternatives and concluded that a combination of source soil removal, groundwater extraction from open excavation, and enhanced bioremediation using oxygen releasing compounds (ORC) would be the best remedial alternative for the site. An enhanced bioremediation background study was proposed in the *CAP*. Preparation of a *CAP* was requested by the HCDEH in a letter dated March 13, 2002. The *CAP* was approved by the HCDEH in a correspondence letter dated May 21, 2002.

Clearwater submitted a *Remedial Action Plan (RAP)*, dated February 14, 2003 to the HCDEH for review. The *RAP* presented results of natural attenuation pilot testing and details for the excavation of impacted soil, excavation dewatering activities, and the use of enhanced bioremediation (ORC). These remedial activities were based on working in conjunction with future site renovation activities.

ROF for MTBE Vertical Delineation Former Cash Oil Arcata May 19, 2006 Page 4 of 10

In January 2004, Clearwater supervised Beacom Construction of Fortuna, California in removal of the existing UST system. Soil samples collected for UST system removal contained detectable levels of TPHg, BTEX, MTBE, TBA, TAME, and lead (Pb) (Table 2). Additionally, a pit water sample was collected on January 15, 2004, which contained detectable concentrations of TPHg, BTEX, MTBE, TBA, and TAME. A subsequent pit water sample on January 20, 2004 also contained detectable concentrations of Pb (Table 3).

Remedial excavation activities followed immediately after the UST removal. The area of the excavation covered the majority of site (approximately 3,600 ft²), except for the northeast corner where the building was located, and dug to a maximum depth of 12 feet bgs (Figures 2a & 2b). Well MW-1 was destroyed earlier, in preparation for remedial excavation and installation of new USTs. Well MW-3 was destroyed during excavation activities. Approximately 2,332 tons of petroleum impacted soil was excavated and transported to BioIndustries in Red Bluff, California for disposal. Approximately 13,000 gal. of petroleum impacted groundwater was pumped from the excavation, and transported to the Seaport facility in Redwood City, California for disposal.

During excavation activities, soil samples were collected from (1) excavated soil to document source removal and (2) final excavation dimensions to verify clean-up (Table 2).

Blue Rock estimated the TPHg mass removed in soil excavated using the average TPHg concentration of excavated soil and total excavated soil mass. Blue Rock estimates that approximately 1,548 lbs of TPHg were removed from the site through soil excavation.

The reduction in TPHg soil mass was intended to remove, or at least significantly reduce, the secondary source of groundwater impact, which results in continued partitioning of petroleum from the sorbed-phase to the dissolved-phase. If the sorbed-phase source is removed, partitioning of petroleum to the dissolved-phase decreases. This condition should result in declining dissolved-phase concentration over time following the excavation. In order to accelerate the decline in dissolved-phase petroleum compounds, Clearwater mixed approximately 1,020 pounds of oxygen-release compound (ORC) into the excavation backfill placed at or below the water table. ORC is designed to release oxygen into the groundwater slowly over time for the purpose of elevating dissolved-oxygen levels to support enhanced aerobic biodegradation of the residual dissolved-phase plume.

Remedial activities are presented in Clearwater's *Remedial Report of Findings*, dated February 10, 2004. The HCDEH concurred with Clearwater's recommendations in a letter dated March 8, 2004.

On March 18, 2004, Beacom pumped approximately 10,000 gallons of groundwater from a UST installation excavation proximal to MW-1. On March 29 and 30, 2004, Blue Rock discharged approximately 10,000 gallons of groundwater under permit that contained acceptable levels of MTBE into the City of Arcata's sewer system. Remedial activities are presented in Blue Rock's First Quarter 2004 Groundwater Monitoring Report, dated April 5, 2004.

Purpose and Scope of Field Activities

The goal of this phase of work was to (1) evaluate the vertical extent of MTBE in soil below 12 feet bgs, and (2) evaluate the vertical extent of MTBE in groundwater below 20 feet bgs, as requested in the HCDEH letter dated March 9, 2006.

In order to accomplish the first goal, two soil borings were performed. These borings were located where MTBE appeared to increase at depth in shallow soil samples previously collected at the site. Two soil borings with soil samples collected at depths of approximately 15, 25, and 35 feet bgs were completed (boring locations shown on Figure 2 and described below):

- DB-1: Located along the southern edge of the former USTs and where MTBE was detected at 1.7 mg/kg at 12 feet bgs. Samples were collected in native material below the remedial excavation limits.
- DB-2: Located downgradient of the former USTs/dispensers in native material outside of the remedial excavation adjacent to MW-2.

In order to accomplish the second goal, collection of deeper grab groundwater samples was completed. Grab groundwater samples were collected at a depth of approximately 25 ft bgs in each boring and attempts to collect grab groundwater samples at a depth of approximately 35 ft bgs were unsuccessful. The drilling locations are shown on Figure 2 and described below:

- HP-1: Located along the southern edge of the former USTs and where MTBE was detected at 1.7 mg/kg at 12 feet bgs.
- HP-2: Located downgradient of the former USTs/dispensers and in native material outside of the remedial excavation adjacent to MW-2.
- HP-3: Located downgradient of the former USTs/dispensers and MW-2 in native material adjacent to MW-6.

Field Activities

Drilling and Soil Sampling

On May 8, 2006, Blue Rock supervised the drilling of two direct push soil borings (DB-1 and DB-2) and three direct push hydropunch borings (HP-1, HP-2, HP-3) (Figure 2). Prior to drilling, soil boring permits were obtained from the HCDEH and right-of-entry agreements were obtained from appropriate parties, as needed, and the Underground Service Alert (USA) was notified. Prior to initiation of drilling activities, Blue Rock and drilling subcontractor personnel reviewed and signed a Site Safety Plan.

A Blue Rock scientist, working under the supervision of a Blue Rock California Professional Geologist, supervised all drilling activities. Drilling was performed by Fisch Environmental (Fisch), of Valley Springs, California, using a direct-push drill rig. Soil samples were collected at 15, 25, and 35 feet bgs. The soil borings were advanced to a maximum depth of 36 ft bgs. A Blue Rock scientist logged soil types in accordance with the Unified Soil Classification System. Additionally, soil samples were screened for the presence of volatile petroleum hydrocarbon vapors with a photo-ionizing organic vapor meter (OVM).

The soil samples were collected using polyethylene sleeves, covered with Teflon lined plastic caps, labeled, documented on a chain-of custody form, and placed on ice in a cooler for transport to the project laboratory.

Vertical Delineation Drilling and Grab Groundwater Sampling

Groundwater sampling activities for vertical delineation of groundwater impacts were accomplished using a direct-push drill-rig, equipped with 1.5-inch diameter drill-rod, to collect grab groundwater samples from a discrete depth. Drilling was performed by Fisch under the supervision of a Blue Rock scientist.

Drilling locations at HP-1, HP-2, and HP-3 were advanced to 25 feet bgs and 35 feet bgs in separate boreholes for the collection of depth discrete groundwater samples utilizing a Hydropunch® attachment to facilitate the collection of groundwater samples. Grab groundwater samples were collected using a ball check valve and the appropriate length of polyethylene tubing. Attempts to collect grab groundwater samples at a depth of 35 feet bgs were unsuccessful in all borings, as groundwater did not enter the sampling pints at this depth. Grab groundwater samples were placed in clean laboratory supplied 40 ml VOA containers, placed on ice, and shipped under chain of custody to the project laboratory.

Soil and Groundwater Sample Analyses

Kiff Analytical (Kiff), a DHS-Certified laboratory in Davis, California, analyzed the soil and water samples by for the following compounds:

The soil samples were analyzed for:

- TPHg, BTEX, and MTBE by EPA Method 8260B
- Percent Moisture by Standard Method 2540B

The groundwater samples were analyzed for:

TPHg, BTEX, and MTBE by EPA Method 8260B

Investigation Results

Site Lithology and Hydrogeology

Soil borings DB-1 and DB-2 were advanced in areas which had been previously investigated to a depth of 20 feet bgs. However soil samples for laboratory analysis were only collected at a maximum depth of 12 feet bgs. Therefore, soil sample collection began at 15 feet bgs in both soil borings. The first 15 feet of the attached soil borings logs for DB-1 and DB-2 are reiterated from soil boring logs MW-3 and MW-2 respectively, which were logged and submitted previously by Clearwater Group.

Based on previous boring logs, clays and silts have been logged to 20 feet bgs. Based on soil samples collected from DB-1 and DB-2, a silty clay is present from approximately 20 to 36 feet bgs with increasing clay content with depth. Soil boring logs DB-1 and DB-2 are attached. Cross section diagrams depicting the deep lithology are presented in Figures 2a and 2b.

Groundwater was initially encountered depth of approximately 10 feet bgs in both borings. Soil samples collected from approximately 35 feet bgs appeared dry to moist. At a depth of approximately 35 feet bgs groundwater was not encountered.

Results of Soil Sample Analysis

Soil samples were successfully sent under chain-of-custody to the project laboratory. MTBE was detected in soil samples collected from 15 feet bgs in soil boring DB-1 only. All soil samples collected, except DB-1 at 15 feet, were below standard laboratory detection limits for TPHg, BTEX, and MTBE. MTBE concentrations in soil samples collected from DB-1 at 15 feet bgs was 0.26 mg/kg (Table 2 and Figure 3). Additionally, the recent and historical soil sampling data for MTBE are shown on Figures 2a, 2b, and 3. The laboratory reports attached.

Results of Grab Groundwater Sample Analysis

Grab groundwater samples were successfully sent under chain-of-custody to the project laboratory. The groundwater sample collected from HP-1, HP-2, and HP-3 at a depth of 25 feet bgs were below standard detection limits for TPHg and BTEX. MTBE was detected at concentrations of 2.5, 0.61, and 1.3 µg/L in groundwater samples collected from HP-1, HP-2, and HP-3 at 25 feet bgs, respectively (Table 3). The laboratory reports are attached.

Summary and Conclusions

Results of the deep subsurface investigation indicate that MTBE was the only analyte detected during this investigation. The only MTBE concentrations detected was in soil samples collected from DB-1 at 15 feet bgs, at a concentration of 0.26 mg/kg. MTBE was not detected in any other soil samples collected during this investigation. The vertical extent of sorbed-phase MTBE has been delineated below the site during this investigation as shown in Figure 2a. All soil samples collected were below standard laboratory detection limits for TPHg and BTEX.

Results from the grab groundwater samples collected below the screened interval of the existing monitoring wells at the site and offsite were below the NCRWQCB cleanup goal of 5 μ g/L. The MTBE concentration detected in HP-1 at 25 feet bgs was 2.5 μ g/L, which is significantly lower than the Pit Water sample collected (4,300 μ g/L) in similar location at 12 feet bgs. The MTBE concentration detected in HP-2 at 25 feet bgs was 0.61 μ g/L, which is significantly lower than the latest MW-2 sample collected (360 μ g/L) in similar location at a screened depth of 3 to 20 feet bgs. The MTBE concentration detected in HP-3 at 25 feet bgs was 1.3 μ g/L, which is similar to the latest MW-6 sample collected (1.0 μ g/L) in similar location at a screened depth of 3 to 20 feet bgs.

Recommendations

Based on the data presented in this report and historical data Blue Rock recommends the following:

- The HCDEH grant regulator closure related to subject gasoline release by Cash Oil.
- Destroy the existing monitoring wells under HCDEH permit.
- Properly dispose of all investigative derived waste at the site.

Certification

This report was prepared under the supervision of a California Professional Geologist at Blue Rock. All statements, conclusions, and recommendations are based upon published results from past consultants, field observations by Blue Rock, and analyses performed by a state-certified laboratory as they relate to the time, location, and depth of points sampled by Blue Rock. Interpretation of data, including spatial distribution and temporal trends, are based on commonly used geologic and scientific principles. It is possible that interpretations, conclusions, and recommendations presented in this report may change, as additional data become available and/or regulations change.

Information and interpretation presented herein are for the sole use of the client and regulating agency. The information and interpretation contained in this document should not be relied upon by a third party.

The service performed by Blue Rock has been conducted in a manner consistent with the level of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions in the area of the site. No other warranty, expressed or implied, is made.

If you have any questions regarding this project, please contact us at (707) 441-1934.

Sincerely,

Blue Rock Environmental, Inc.

Prepared by:

Scott Ferriman Project Scientist Reviewed by:

Brian Gwinn, PG Principal Geologist

ROF for MTBE Vertical Delineation Former Cash Oil Arcata May 19, 2006 Page 10 of 10

Attachments:

- · Table 1: Well Construction Details
- Table 2: Soil Analytical Data
- Table 3: Groundwater Elevations and Analytical Data
- Figure 1: Site Location Map
- Figure 2: Site Plan
- · Figure 2a: Cross-Section A-A'
- · Figure 2b: Cross-Section B-B'
- Figure 3: Post-Remediation MTBE in Soil 5/06
- Blue Rock's Boring Logs for DB-1 and DB-2
- · Laboratory Reports and Chain of Custody Forms

Distribution:

- Mr. Clyde Harvey, 1785 Fort Douglas Circle, Salt Lake City, UT 84103
- Mr. Dennis O'Keefe, Golden Gate Petroleum, 501 Shell Ave, Martinez, CA 94553

Table 1 WELL CONSTRUCTION DETAILS

Former Cash Oil Arcata 421 J Street Arcata, California Blue Rock Project No. NC-003

Well Identification	Date Intstalled	Intstalled by	Casing Diameter (inches)	Total Depth (feet)	Blank Interval (feet)	Screened Interval (feet)	Slot Size (inches)	Filter Pack (feet)	Bentonite Seal (feet)	Cement (feet)
MW-1	8/31/00	Clearwater	2	20	0-3	3-20	0.02	2.5-20	1.5-2.5	0-1.5
	(MW-1 wa	s destroyed in	1 3/04 for in	stallatio	n of the ne	w UST syst	em.)			
MW-2	8/31/00	Clearwater	2	20	0-3	3-20	0.02	2.5-20	1.5-2.5	0-1.5
MW-3	8/31/00	Clearwater	2	20	0-3	3-20	0.02	2.5-20	1.5-2.5	0-1.5
	(MW-3 wa	s destroyed in	1/04 for re	medial o	excavation	.)				
MW-4	8/31/00	Clearwater	2	20	0-3	3-20	0.02	2.5-20	1.5-2.5	0-1.5
MW-5	11/8/01	Clearwater	2	20	0-3	3-20	0.02	2.5-20	1.5-2.5	0-1.5
MW-6	11/8/01	Clearwater	2	20	0-3	3-20	0.02	2.5-20	1.5-2.5	0-1.5
MW-7	11/8/01	Clearwater	2	20	0-3	3-20	0.02	2.5-20	1.5-2.5	0-1.5

Table 2 SOIL ANALYTICAL DATA

Former Cash Oil Arcata 421 J Street Arcata, California Blue Rock Project No. NC-003

Sample ID	Sample Depth (feet bgs)	Sample Date	TPHg (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	Methanol (mg/kg)	Ethanol (mg/kg)	Lead (mg/kg)
oil Samples Co	lected at UST Ren	noval													
SW-1@8'	8	1/15/04	<1	< 0.005	< 0.005	< 0.005	< 0.005	0.16	0.022	< 0.005	< 0.005	< 0.005			8.59
SW-2@8'	8	1/15/04	<	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.025	< 0.005	< 0.005	< 0.005			
SW-3@8'	8	1/15/04	2.2	0.15	0.56	0.043	0.21	1.0	< 0.025	< 0.005	< 0.005	< 0.005	-		
SW-4@8'	8	1/15/04	6.2	< 0.005	< 0.005	< 0.005	< 0.005	0.38	0.64	< 0.005	< 0.005	< 0.005	**		4.22
SW-5@8'	8	1/15/04	13	0.24	0.60	0.059	0.094	8.8	0.60	< 0.025	< 0.025	0.063		**	
SW-6@8'	8	1/15/04	<1	< 0.005	< 0.005	< 0.005	< 0.005	0.034	0.017	< 0.005	< 0.005	< 0.005		**	7.33
D-1@2.5'	2.5	1/19/04	920	2.2	57	18	99	67	1.9	< 0.05	< 0.05	< 0.05		**	
D-2@2.5'	2.5	1/19/04	44	0.13	0.083	1.5	4.2	1.1	0.38	< 0.005	< 0.005	0.35			
D-3@2.5'	2.5	1/23/04	<1	< 0.005	< 0.005	< 0.005	0.0092	0.11	0.02	< 0.005	< 0.005	0.0063			
D-4@2.5'	2.5	1/23/04	4,700	8.8	120	63	390	41	3.4	< 0.25	< 0.25	< 0.25			
P-1@2.5'	2.5	1/20/04	10	0.49	0.085	0.15	0.22	2.1	0.10	< 0.005	< 0.005	0.14	**	***	
P-2@2.5'	2.5	1/22/04	4.2	0.083	0.15	0.024	0.49	8.4	0.85	< 0.005	< 0.005	0.049			
EX-I															
EX-2 EX-3 EX-4 EX-5 EX-6	stockpile stockpile stockpile stockpile stockpile	1/20/04 1/20/04 1/21/04 1/22/04 1/23/04	36 410 110 620 <1	0.035 1.0 0.38 1.1 0.0059	0.1 19 0.098 0.88 <0.005	0.081 11 2.3 9.3 <0.005	1.1 55 4.6 43 <0.005	1.2 3.9 2.3 7.7 0.24	0.28 0.53 0.55 0.47 0.1	<0.025 <0.10 <0.005 <0.025 <0.005	<0.025 <0.10 <0.005 <0.025 <0.005	0.043 0.20 0.18 0.17 0.0097	-	-	6.23
EX-2 EX-3 EX-4 EX-5 EX-6	stockpile stockpile stockpile stockpile	1/20/04 1/21/04 1/22/04 1/23/04	410 110 620 <1	1.0 0.38 1.1 0.0059	19 0.098 0.88 <0.005	11 2.3 9.3 <0.005	55 4.6 43	3.9 2.3 7.7	0.53 0.55 0.47	<0.10 <0.005 <0.025	<0.10 <0.005 <0.025	0.20 0.18 0.17	-	-	6.23
EX-2 EX-3 EX-4 EX-5 EX-6	stockpile stockpile stockpile stockpile	1/20/04 1/21/04 1/22/04 1/23/04 om Sidewalls a	410 110 620 <1	1.0 0.38 1.1 0.0059 of Remedia	19 0.098 0.88 <0.005	11 2.3 9.3 <0.005	55 4.6 43 <0.005	3.9 2.3 7.7 0.24	0.53 0.55 0.47 0.1	<0.10 <0.005 <0.025	<0.10 <0.005 <0.025	0.20 0.18 0.17	-	-	6.23
EX-2 EX-3 EX-4 EX-5 EX-6 onfirmation Sa EB-1@12'	stockpile stockpile stockpile stockpile stockpile	1/20/04 1/21/04 1/22/04 1/23/04 0m Sidewalls at	410 110 620 <1 end Bottom	1.0 0.38 1.1 0.0059 of Remedia <0.005	19 0.098 0.88 <0.005 al Excavation <0.005	11 2.3 9.3 <0.005	55 4.6 43 <0.005	3.9 2.3 7.7 0.24	0.53 0.55 0.47	<0.10 <0.005 <0.025	<0.10 <0.005 <0.025 <0.005	0.20 0.18 0.17 0.0097	-	-	6.23
EX-2 EX-3 EX-4 EX-5 EX-6 onfirmation Sa EB-1@12' EB-2@7	stockpile stockpile stockpile stockpile mples Collected fro 12 7	1/20/04 1/21/04 1/22/04 1/23/04 0m Sidewalls at 1/20/04 1/23/04	410 110 620 <1 end Bottom <1 <1	1.0 0.38 1.1 0.0059 of Remedia <0.005 <0.005	19 0.098 0.88 <0.005 al Excavatia <0.005 <0.005	11 2.3 9.3 <0.005 <0.005 <0.005	55 4.6 43 <0.005 <0.005	3.9 2.3 7.7 0.24 1.7 0.098	0.53 0.55 0.47 0.1	<0.10 <0.005 <0.025 <0.005	<0.10 <0.005 <0.025 <0.005	0.20 0.18 0.17 0.0097	-	-	6.23
EX-2 EX-3 EX-4 EX-5 EX-6 onfirmation Sa EB-1@12' EB-2@7' EB-3@12'	stockpile stockpile stockpile stockpile mples Collected fro 12 7	1/20/04 1/21/04 1/22/04 1/23/04 0m Sidewalls at 1/20/04 1/23/04 1/23/04	410 110 620 <1 end Bottom <1 <1 <1	1.0 0.38 1.1 0.0059 of Remedia <0.005 <0.005 <0.005	19 0.098 0.88 <0.005 al Excavatio <0.005 <0.005 <0.005	2.3 9.3 <0.005 20.005 <0.005 <0.005	55 4.6 43 <0.005 <0.005 <0.005 <0.005	3.9 2.3 7.7 0.24 1.7 0.098 0.64	0.53 0.55 0.47 0.1	<0.10 <0.005 <0.025 <0.005	<0.10 <0.005 <0.025 <0.005	0.20 0.18 0.17 0.0097	-	-	6.23
EX-2 EX-3 EX-4 EX-5 EX-6 Diffirmation Sa EB-1@12' EB-2@7' EB-3@12' ES-1@8'	stockpile stockpile stockpile stockpile mples Collected fro 12 7 12 8	1/20/04 1/21/04 1/22/04 1/23/04 1/20/04 1/23/04 1/23/04 1/20/04	410 110 620 <1 and Bottom <1 <1 <1 <1	1.0 0.38 1.1 0.0059 of Remedia <0.005 <0.005 <0.005	19 0.098 0.88 <0.005 d Excavatio <0.005 <0.005 <0.005	2.3 9.3 <0.005 0.005 <0.005 <0.005 <0.005	55 4.6 43 <0.005 <0.005 <0.005 <0.005 <0.005	3.9 2.3 7.7 0.24 1.7 0.098 0.64 <0.005	0.53 0.55 0.47 0.1	<0.10 <0.005 <0.025 <0.005	<0.10 <0.005 <0.025 <0.005	0.20 0.18 0.17 0.0097	-	-	6.23
EX-2 EX-3 EX-4 EX-5 EX-6 onfirmation Sa EB-1@12' EB-2@7' EB-3@12' ES-1@8' ES-2@8'	stockpile stockpile stockpile stockpile mples Collected fro 12 7 12 8	1/20/04 1/21/04 1/22/04 1/23/04 1/23/04 1/20/04 1/23/04 1/23/04 1/20/04 1/26/04	410 110 620 <1 and Bottom <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	1.0 0.38 1.1 0.0059 of Remedia <0.005 <0.005 <0.005 <0.005 <0.005	19 0.098 0.88 <0.005 dl Excavatio <0.005 <0.005 <0.005 <0.005 <0.005	2.3 9.3 <0.005 0.005 <0.005 <0.005 <0.005 <0.005	55 4.6 43 <0.005 <0.005 <0.005 <0.005 <0.005	3.9 2.3 7.7 0.24 1.7 0.098 0.64 <0.005 0.13	0.53 0.55 0.47 0.1	<0.10 <0.005 <0.025 <0.005	<0.10 <0.005 <0.025 <0.005	0.20 0.18 0.17 0.0097	-	-	6.23
EX-2 EX-3 EX-4 EX-5 EX-6 Dentification Sa EB-1@12' EB-2@7' EB-3@12' ES-1@8' ES-2@8' ES-3@8'	stockpile stockpile stockpile stockpile mples Collected fro 12 7 12 8 8	1/20/04 1/21/04 1/22/04 1/23/04 1/23/04 1/20/04 1/23/04 1/23/04 1/20/04 1/26/04 1/26/04	410 110 620 <1 and Bottom <1 <1 <1 <1 <1 1.4 1.5	1.0 0.38 1.1 0.0059 of Remedia <0.005 <0.005 <0.005 <0.005 <0.005 0.005	19 0.098 0.88 <0.005 al Excavatio <0.005 <0.005 <0.005 <0.005 <0.005 0.005	2.3 9.3 <0.005 0.005 0.005 <0.005 <0.005 <0.005 0.005 0.01	55 4.6 43 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.072	3.9 2.3 7.7 0.24 1.7 0.098 0.64 <0.005 0.13 0.19	0.53 0.55 0.47 0.1	<0.10 <0.005 <0.025 <0.005	<0.10 <0.005 <0.025 <0.005	0.20 0.18 0.17 0.0097	-	-	6.23
EX-2 EX-3 EX-4 EX-5 EX-6 EB-1@12' EB-2@7' EB-3@12' ES-1@8' ES-2@8' ES-3@8' ES-4@8'	stockpile stockpile stockpile stockpile mples Collected fro 12 7 12 8 8 8	1/20/04 1/21/04 1/22/04 1/23/04 1/23/04 1/20/04 1/23/04 1/23/04 1/20/04 1/26/04 1/26/04 1/26/04	410 110 620 <1 and Bottom <1 <1 <1 <1 <1 1.4 1.5	1.0 0.38 1.1 0.0059 of Remedia <0.005 <0.005 <0.005 <0.005 <0.005 0.014 0.24	19 0.098 0.88 <0.005 al Excavatio <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	11 2.3 9.3 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	55 4.6 43 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.072 0.99	3.9 2.3 7.7 0.24 1.7 0.098 0.64 <0.005 0.13 0.19 1.8	0.53 0.55 0.47 0.1	<0.10 <0.005 <0.025 <0.005	<0.10 <0.005 <0.025 <0.005	0.20 0.18 0.17 0.0097	-	-	6.23
EX-2 EX-3 EX-4 EX-5 EX-6 EB-1@12' EB-2@7 EB-3@12' ES-1@8' ES-2@8' ES-3@8'	stockpile stockpile stockpile stockpile mples Collected fro 12 7 12 8 8	1/20/04 1/21/04 1/22/04 1/23/04 1/23/04 1/20/04 1/23/04 1/23/04 1/20/04 1/26/04 1/26/04	410 110 620 <1 and Bottom <1 <1 <1 <1 <1 1.4 1.5	1.0 0.38 1.1 0.0059 of Remedia <0.005 <0.005 <0.005 <0.005 <0.005 0.005	19 0.098 0.88 <0.005 al Excavatio <0.005 <0.005 <0.005 <0.005 <0.005 0.005	2.3 9.3 <0.005 0.005 0.005 <0.005 <0.005 <0.005 0.005 0.01	55 4.6 43 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.072	3.9 2.3 7.7 0.24 1.7 0.098 0.64 <0.005 0.13 0.19	0.53 0.55 0.47 0.1	<0.10 <0.005 <0.025 <0.005	<0.10 <0.005 <0.025 <0.005	0.20 0.18 0.17 0.0097	-	-	6.23

Table 2 SOIL ANALYTICAL DATA

Former Cash Oil Arcata 421 J Street Arcata, California Blue Rock Project No. NC-003

Sample ID	Sample Depth (feet bgs)	Sample Date	TPHg (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	Methanol (mg/kg)	Ethanol (mg/kg)	Lead (mg/kg)
Sample 1D	(reet ugs)	Sample Date	(mg/ng)	(mg/ng)	(mg/ng)	(mg/ng)	(mg/ng)	(mg/mg/	(mg/ng)	(1116,116)	(1118) 118)	(66)	(6,6)	(1118) 118)	(66)
Historical Invest	igation Soil Samp	les													
B-1	10	5/7/97	27	0.057	0.15	1.4	2.7	<1.3			**				
B-2	10	5/7/97	1.0	< 0.005	0.0066	0.0079	0.009	0.084						**	
B-3	4	12/2/99	<1	< 0.005	< 0.005	< 0.005	< 0.005	0.091	***				**		
B-6	4	12/2/99	3.6	< 0.005	< 0.005	< 0.005	0.0051	0.01	< 0.5	< 0.02	< 0.02	< 0.02			
B-7	3.5	12/2/99	<1	< 0.005	< 0.005	< 0.005	< 0.005	0.023	< 0.5	< 0.02	< 0.02	< 0.02			
B-8	4	12/2/99	<1	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.5	< 0.02	< 0.02	< 0.02			
B-9	4	12/2/99	3.5	0.013	< 0.005	< 0.005	0.037	1.1	< 0.5	< 0.02	< 0.02	< 0.02			**
B-10	4	12/2/99	<1	< 0.005	< 0.005	< 0.005	< 0.005	0.61	< 0.5	< 0.02	< 0.02	0.025			
B-11	5	8/31/00	1.1	0.0052	< 0.005	< 0.005	< 0.005	0.083	< 0.005	< 0.005	< 0.005	< 0.005	< 0.02	< 0.01	
B-11	10	8/31/00	<1	< 0.005	< 0.005	< 0.005	< 0.005	0.14	< 0.005	< 0.005	< 0.005	< 0.005	< 0.02	< 0.01	
MW-1	5	8/31/00	<1	< 0.005	< 0.005	< 0.005	< 0.05	0.018	0.0072	< 0.005	< 0.005	< 0.005	< 0.02	< 0.01	
MW-1	10	8/31/00	<1	< 0.005	< 0.005	< 0.005	< 0.005	0.025	< 0.005	< 0.005	< 0.005	< 0.005	< 0.02	< 0.01	
MW-2	5	8/31/00	<1	< 0.005	< 0.005	< 0.005	< 0.005	0.60	0.034	< 0.005	< 0.005	0.0095	< 0.8	0.03	**
MW-2	10	8/31/00	<1	< 0.005	< 0.005	< 0.005	< 0.005	0.62	0.014	< 0.005	< 0.005	0.01	< 0.8	< 0.01	
MW-3	5	8/31/00	13	0.21	0.0062	0.099	0.026	5.9	1.2	< 0.005	< 0.005	0.21	<1	< 0.05	
MW-3	10	8/31/00	<1	< 0.005	< 0.005	< 0.005	< 0.005	1.6	0.86	< 0.005	< 0.005	0.11	< 0.5	< 0.02	
MW-4	5	8/31/00	<1	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.2	< 0.01	
MW-4	10	8/31/00	<1	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.2	< 0.01	**
MW-5	5	11/8/01	<1	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.2	< 0.01	
MW-5	10	11/8/01	<1	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.2	< 0.02	
MW-5	15	11/8/01	<1	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.2	< 0.02	
MW-6	10	11/8/01	<1	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.4	< 0.02	
MW-6	15	11/8/01	<1	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.4	< 0.02	
MW-7	10	11/8/01	<1	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.2	< 0.01	
MW-7	15	11/8/01	<1	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.2	< 0.02	

Table 2 SOIL ANALYTICAL DATA

Former Cash Oil Arcata 421 J Street

Arcata, California

Blue Rock Project No. NC-003

Sample ID	Sample Depth (feet bgs)		TPHg (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	Methanol (mg/kg)	Ethanol (mg/kg)	Lead (mg/kg)
Vertical Delineat	tion Soil Samples														
DB-1-15'	15	5/8/06	<1	< 0.005	< 0.005	< 0.005	< 0.005	0.26						-	
DB-1-25'	25	5/8/06	<1	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005							
DB-1-35'	35	5/8/06	<i< td=""><td>< 0.005</td><td>< 0.005</td><td>< 0.005</td><td>< 0.005</td><td>< 0.005</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></i<>	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005						-	
DB-2-15*	15	5/8/06	<1	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005							
DB-2-25*	25	5/8/06	<1	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005					-		
DB-2-35'	35	5/8/06	<1	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-						_

Notes

bgs: below ground surface

"--" Not analyzed, available or applicable

mg/kg = milligrams per kilogram

<###: Not detected above the method detection limit as shown</p>

TPHg: Total petroleum hydrocarbons as gasoline by EPA Method 5030/8260B

BTEX by EPA Method 8260B

MTBE: Methyl tertiary butyl ether by EPA 8260B

TBA: Tertiary butanol by EPA 8260B

DIPE: Di isopropyl ether by EPA 8260B

ETBE: Ethyl tertiary butyl ether by EPA 8260B

TAME: Tertiary amyl methyl ether by EPA 8260B

Methanol: by EPA Method 8260B

Ethanol: by EPA method 8260B

Lead: Total Lead by EPA method 6010B

Table 3
GROUNDWATER ELEVATIONS
AND ANALYTICAL DATA
Former Cash Oil Arcata
421 J Street
Arcata, California

Weil Stapple TOC DIMA STRILL CWIST Stapple TOC DIMA STRILL CWIST TRIPLE TOC TOC TOC TOC CWIST STRILL TOC CWIST										Blue Rock Project No. NC-003	ject No. NC.	-003								
1	Well	Sample	TOC	WIG	SPH	GWE	TPHg	Benzene (us/L)	Toluene (ne/L)	Ethylbenzene (ng/L)	Xylenes (µg/L.)	MTBE (ng/L)	TBA (ug/L)	DIPE (ng/L)	ETBE (sect.)	TAME (pg/L)	Methanol (pg/L)	Ethanol (pg/L)	(ug/L)	DO (mg/L)
10 10 10 10 10 10 10 10																				
1	Grab Groundh	ater Samples					1000000		-	-	-		200		1				1 000	
1,	B-1	547/97	-	1	0.00	-	006'6	880	25	650	069	100,000	1	-		1		1		1
1,	8-2	5/7/97	1	1	0.00	1	0\$>	<0.5	<0.5	<0.5	-0.5	<0.5	01>	⊽	⊽	⊽	1	1		1
1,	B-6	12/2/99	-	4.5	0.00	-	988	0.84	0.52	40.5	<0.5	061	<10	▽	⊽	=	***			1
1	8-7	12/2/99	1	7	0.00	I	<250	⊽	⊽	⊽	⊽	1,200	050	2.5	2.5	13	1	ı	1	1
4 0.00 1.2460 4.00 4.00 1.2460 4.00 4.00 1.2460 4.00 4.00 1.2460 4.00 4.00 1.2460 4.00 4.00 1.2460 4.00	8-8	12/2/99	1	-4.5	00.00	1	<\$0	<0.5	<0.5	40.5	<0.5	3.3	<10	⊽	⊽			1		I
1,	8-9	12/2/99	1	S-	0.00	-	2,600	39	<10	<10	<10	12,000	1,200	<25	53	220	1	1		1
1,	8-10	12/2/99	-	5	0.00	-	2,600	01>	<10	<10	<10	13,000	780	425	525	380	1	1	1	1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	8-11	8/31/00	1	-11-	0.00	***	54	<0.5	<0.5	<0.5	1.3	340	8	<0.5	<0.5	4.9	<100	<10	***	1
1,	Pit Water	1/15/04	1	-	sheen	-	42,000	740	5,900	1,200	4,600	13,000	2,000	525	<25	57	ı		1	1
10 10 10 11 10 12 12 13 13 13 13 13 13	Pit Water	1/20/04	1	1	0.00	****	16,000	95	019	270	840	4,300	1	1	-			1	91	1
Column C	Water Tank	3/19/04	1	1	0.00	-	140	<0.5	<0.5	<0.5	⊽	180	-	-	1	-	1	1	i	1
Column C	HP-1-25	5/8/06	1	1	0.00	****	05>	<0.5	<0.5	<0.5	<0.5	2.5	1	1	1	-		1	-	1
Column C	HP-2-25	\$/8/06	1	1	000	-	050	<0.5	<0.5	<0.5	<0.5	19'0	-	-	-	1	1	1	1	1
611 0.00 92.59 6.01 0.00 92.59 6.11 0.00 92.99 4.75 0.00 92.99	HP-3-25	5/8/06	-	I	0.00	-	050	<0.5	<0.5	<0.5	<0.5	1.3	1	1	-	1	-	-	1	1
611 0.00 92.9 6.0 40.3 40.4 40.5 4	Monitoring IVo	II Groundwate	Samples																	
1,11,16,00 98,70 6,11 0.00 92,94 1.	MW-1	9/11/00	98.70	6.11	0.00	92.59	050	<0.3	<0.3	<0.3	9.0>	28.2	<500	<0.5	<0.5	<0.5		-	1	1
11/16/00 98,70 4,75 6,00 9,197		10/16/00	98.70	6.11	000	92.59	-	1	1	1	-	****	-	1	1	-	***	***	-	1
121/200 98.70 4.60 0.00 94.10 0.50 0.410 0.50 0.410 0.50 0.410 0.50 0.410 0.50 0.410 0.50 0.410 0.50 0.410 0.50 0.410 0.50 0.410 0.50 0.410 0.50 0.410 0.50 0.410	Screen	11/16/00	98.70	4.73	000	93.97	1	1	-	ı			1	1	-		-			1
98.70 4.99 0.00 93.71 .	3-20	12/12/00	98.70	4.60	0000	94.10	050	<0.3	<0.3	<0.3	9.0>	87	<500	<0.5	<0.5	77	-			I
98.70 4,70 0.00 94,00 -		1/22/01	98.70	4.99	00.00	93.71	1	-	1	1	1	1	1	1	1	1	1	-	-	1
98.70 4.51 0.00 94.17 120 40.5 40.5 44 42 45 40.5		2/16/01	98.70	4.70	0000	94.00	1	1	1	-	1	1	1	1	1	1	1	-		1
98.70 5.51 0.00 93.19 <0.61 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <0.62 <		3/8/01	98.70	4.53	0000	94.17	120	<0.5	<0.5	<0.5	#	42	8	<0.5	<0.5		05>	8	-	1
98.70 6.37 0.00 9.23 6.05 <t< td=""><td></td><td>10/9/9</td><td>98.70</td><td>5.51</td><td>00'0</td><td>93.19</td><td>050</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td>37</td><td>8.7</td><td><0.5</td><td><0.5</td><td>2.5</td><td><200</td><td>v</td><td>-</td><td>1</td></t<>		10/9/9	98.70	5.51	00'0	93.19	050	<0.5	<0.5	<0.5	<0.5	37	8.7	<0.5	<0.5	2.5	<200	v	-	1
1281 4,18 0.00 8,63 4.0		9/4/01	98.70	6.37	0000	92.33	050	40.5	<0.5	<0.5	<0.5	19	8	<0.5	<0.5	23	1	-	1	1
1281 338 0.00 8.83 4.0 4.5 4		11/16/01	12.81	4.18	0000	8.63	05>	<0.5	<0.5	<0.5	<0.5	15	8	<0.5	<0.5	1.8	<100	D	-	-
128 453 0.00 8.28 450 405 405 405 405 405 11 8.8 405 405 1.1 1.		2/8/02	12.81	3.98	0000	8.83	050	<0.5	<0.5	<0.5	<0.5	40	9.4	40.5	<0.5	3.4	-	I	i	1
16,19 6,26 0.00 9,93 0.04 0.05		5/3/02	12.81	4.53	0000	8.28	950	<0.5	<0.5	<0.5	<0.5	11	8.8	<0.5	<0.5	1.1	-	1	ı	1
16,19 5,95 0.00 10,24 0.50 0.025		8/29/02	61'91	6.26	000	9.93	<50	<0.5	<0.5	<0.5	<0.5	17	16	<0.5	<0.5	1.4	1	-	1	1
16,19 4,54 0.00 11,65 <50 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5 <9.5		11/14/02	16.19	5.95	000	10.24	050	<0.5	<0.5	<0.5	<0.5	11	0	<0.5	<0.5	1.2	1	1	1	1
6,19		2/11/03	16.19	4.54	00'0	11.65	050	<0.5	<0.5	<0.5	<0.5	8.2	10	<0.5	<0.5	6.9	1	1	***	1
16.19 5.80 0.00 10.39 <50 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05		5/7/03	61'91	4.07	000	12.12	050	40.5	<0.5	<0.5	<0.5	9.1	13	<0.5	<0.5	9.76	-	1		1
16.19 6.54 0.000 9.65 <50 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05		8/4/03	61.91	5.80	0000	10.39	<50	40.5	<0.5	<0.5	<0.5	6.4	10	<0.5	<0.5	0.81	1	1	1	1
16,19 4,04 0.00 12.15 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.		11/3/03	16.19	6.54	00'0	9.65	050	40.5	<0.5	40.5	<0.5	8.3	7	<0.5	<0.5	0.72	1	1	1	1
		3/8/04	61'91	4.04	0000	12.15	050	<0.5	<0.5	40.5	<0.5	20	8	<0.5	<0.5	<0.5	-		-	0.25

Table 3
GROUNDWATER ELEVATIONS
AND ANALYTICAL DATA
Former Cash Oil Arcata
421 J Street
Arcata, California

	DO (mg/L)	1	1	ı	ı	1	ı	1	1	1	1	-	-	1	1		1	1	1	0.52	0.76	1.53	1.19	067	0.57	0.85	1.34	1	1	1	1	1	1	1 1	I	1	i	1	1	1	ı	ı	i	ı	
	Lead (ug/L)	-	1	ı	1	1		-	1	1	-	-	1	1	1		-		-	***	-	ı	1	1	-		1	-	1	1	-	I		1	-	1	1						1		
	Ethanol (ug/L)	ı	-		1	1	1	20	<50	1	<10	1	1		-	1	1	1	-			1	1		1	-	1	1	1	1	1	1	-	002	2001	<\$00	ı	1	1	i	1	1	1	1	
	Methanol (µg/L)	1	1		1			<\$00	6,000	1	<2,000		1	1	-	-	-	1	1	1	1	-	-	1	1		-	-	-	1	-		1	000,015	-	<120,000	1	1	1	1	1	1	1	-	
	TAME (µg/L)	40.3		1	<0.5	1	1	18	20	17	13	100	150	25	29	160	170	19	58	150	34	1	1	-	1		ı	1,150	1		2,280	1	1 ;	670	066	1,200	260	790	240	1,400	160	430	420	380	
	ETBE (#g/L)	<0.5	1		<0.5	1		4	7	<0.5	▽	<10	01>	01>	~	01>	01×	8	0	<10	01>	1	1	-		-	1	<0.5	1		<250	1	1 3	0 %	30	<50	420	\$20 \$20	<10	420	²⁰	20	01>	010	
	DIPE (Pg/L)	40.5	1	1	40.5	ı	1	å	v	<0.5	▽	010	<10 <10	01>	▽	01×	01×	8	7	<10	01>	1	1	1	1	1	1	40.5	1		<250	ı	1	9 7	8	950	97	8	01>	20	070	9	01>	000	
	TBA (Hg/L)	- 005>	-		200			8	98	100	18	140	250	00IV	91	170	210	050	989	150	<100				-	-	-	- 008>	1		<250,000		1	5,100	2,000	4,200	920	3,400	1,200	1,800	2,800	1,200	1,500	1,500	
03	MTBE (ug/L)	3,130		1	2,020	-	ı	1,400	1,200	1,100	710	3,600	4,300	3,100	2,200	4,400	4,200	2,100	1,800	4,200	940	1,000	700	1,100	820	370	360	12,500	1	***	41,100	ı	1	0,790	16,000	22,000	9000'9	9,500	4,780	8,600	11,000	8,700	5,500	4,600	
et No. NC-0	Xylenes (µg/L)	9'0>	1	1	970>	1	1	4	v	<0.5	⊽	0I>	01>	<10	⊽	×10	010	7	0	<10	<20	Q	<1.5	</td <td><1.5</td> <td><0.5</td> <td>40.5</td> <td>10.7</td> <td>1</td> <td>1</td> <td><300</td> <td>1</td> <td>-</td> <td>70 %</td> <td>88</td> <td>970</td> <td>75</td> <td>22</td> <td><10</td> <td>20</td> <td><20</td> <td>56</td> <td>0 ></td> <td><10</td> <td></td>	<1.5	<0.5	40.5	10.7	1	1	<300	1	-	70 %	88	970	75	22	<10	20	<20	56	0 >	<10	
Blue Rock Project No. NC-003	Ethylbenzene (ng/L)	<0.3	1	1	<0.3	-	1	4	V	<0.5	⊽	<10	<10	<10	⊽	<10	<10	v	77	<10	<10	Q	<1.5	<1.5	<1.5	<0.5	<0.5	10.4	1		<150	1	1	\$ 7	25	250	54	26	01>	020	27	26	×10	- OI>	
B	Toluene 1 (µg/L.)	<0.3	1	1	<0.3	1	1	4	v	<0.5	⊽	<10	<10	01V	⊽	<10	<10	7	7	<10	<10	0	<1.5	<1.5 5.15	<1.5	<0.5	<0.5	**	1	1	<150	1	1 !	130	100	590	26	<20	<10	-20 -20	<20 <20	<20	01×	<10	
	Benzene (µg/L.)	<0.3	1	1	<0.3	1	1	Ç,	8	<0.5	⊽	61	01>	010	⊽	=	<10	8	8	<10	<10	4	N ≥ 1.5	<.I.S	<.!>	<0.5	<0.5	186	1		499	1	1	230	230	720	170	110	800	120	200	120	62	75	
	TPHg (pg/L)	1,120	1	1	423	1	1	200	<500	<50	×100	1,300	<1,000	<1,000	220	<1,000	<1,000	<500	<\$00	<1,000	<1,000	<200	<200	<200	<150	085	050	6.390	1	1	29,200	1	1	3,100	4.700	10,000	4,200	2,700	1,800	4,300	4,500	2,800	1,900	1,900	100
	GWE (feet)	16/26	92.89	94.23	93.22	93.89	60'96	94.18	93.36	92.46	8.38	8.77	8.30	90'01	10.37	11.64	12.08	95'01	65.6	11.74	10.99	10.30	1.44	11.83	11.51	10.83	11.60	94.19	93.22	94.74	94.82	94.31	24.67	F. 35 (2)	92.74	9.15	08'6	80.6	10.34	10.70	12.35	12.93	10.83	10.20	Removed during remedial soil excavation activities
	SPH (feet)	00'0	0.00	000	00'0	0.00	00'0	00'0	00'0	00'0	00'0	0.00	0.00	00'0	0.00	00'0	00'0	00'0	00'0	00'0	00'0	00'0	00'0	00'0	00'0	0.00	00'0	0.00	00.00	00'0	00'0	00'0	00'0	0000	000	0.00	00'0	000	000	000	000	00'0	0.00	0000	fial soil exca
	(feet)	5.19	5.21	3.87	4.88	4.21	4.01	3.92	4.74	5.64	3.85	3.46	3.93	5.55	5.24	3.97	3.53	5.05	6,02	3.87	4.62	5.31	4.17	3.78	4.10	4.78	4.01	5.30	6.36	4.84	4.76	5.27	4.91	4,79	6.84	4.55	3.90	4.62	6.74	6.38	4.73	4.15	6.25	98.9	luring remod
	TOC (feet)	98.10	98.10	98.10	98.10	98.10	98.10	98.10	98.10	98.10	12.23	12.23	12.23	15.61	19'51	15.61	19'51	15.61	19'51	15.61	19'51	15.61	19'51	15.61	19'51	19.61	19'51	90 08	85'66	99.58	85'66	85'66	99.58	99.58	95 00	13.70	13.70	13.70	17.08	17.08	17.08	17.08	17.08	17.08	Removed
	Sample Date	00/11/6	10/16/00	11/16/00	12/12/00	1/22/01	2/16/01	3/8/01	10/9/9	9/4/01	10/91/11	2/8/02	5/3/02	8/29/02	11/14/02	2/11/03	5/7/03	8/4/03	11/3/03	3/8/04	5/17/04	8/2/04	11/1/04	2/3/05	5/2/05	8/3/05	11/4/05	9/11/00	10/16/00	00/91/11	12/12/00	1/22/01	2/16/01	3/8/01	9/4/01	10/91/11	2/8/02	5/3/02	8/29/02	11/14/02	2/11/03	5/7/03	8/4/03	11/3/03	
	Well	MW-2		Screen	3:20																							MW-1		Screen	3'-20'														

Table 3
GROUNDWATER ELEVATIONS
AND ANALYTICAL DATA
Former Cash Oil Arcata
421 J Street
Arcata, California
Dies Deet Decision No. NO. 002

	DO (mg/L)		1	1	1	-	1	:	1	1		I	1	1	1	1	i	1	1	1	0.12	0.84	1.99	1.38	1.92	0.52	0.88	68'0	1	1	1	1	1	1	1		1	0.38	0.78	1.89	1.36	2.29	0.67	1.14	0.79
	Lead (mg/L)	1000	1	1	1	!	1		1	1	1	1	1	1	1			1		-		1	1	1		:	-	1	1	1	-	1		1		1	1	1		-	I	1	-	-	1
	Ethanol (ne/L)	1000	-	1	ı	***	1	1	0	7	***	v	ı	1	I	I	1	1	****	-	-	1	1	1	1	1	-	1	5	1	1	-	-	1	1	ı	1	1	1	1	1	I	1		1
	Methanol (ne/L)	1		1		-	ı	1	<50	<\$0	1	<50	1	1	-		-	-	-	-		-		1	-	1	1	1	<50		-	-	***	-	1	-	1	ı		-	1	1	-	-	:
	TAME	1000	3.7	1	1	<0.5	1	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	***	1	-	1	1	1	<0.5	<0.5	<0.5	<0.5	<0.5	40.5	<0.5	<0.5	<0.5	<0.5	<0.5	i	1	ı	1	1	1
	ETBE (ne/L)	Con Made	<0.5	1	1	40.5	1	1	40.5	<0.5	40.5	40.5	500	40.5	40.5	00.5	40.5	00.5	<0.5	40.5	<0.5	500.5	1	1				1	40.5	<0.5	40.5	<0.5	500	905	<0.5	40.5	40.5	<0.5	<0.5	-	!	ı	1	1	1
	DIPE	for Alah	40.5	1	1	<0.5		1	40.5	40.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1	ı			1	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		ı		1		1
	TBA (ne/L)	62,041	008>	1	1	005	1	1	\$	8	7	8	8	8	8	9	%	8	8	8	7	9	1	1	-	;	-	-	0	8	'S	0	٧	Ø	8	۵.	8	0	*>	-	-		1	1	-
03	MTBE (ne/L)	Contract of the Contract of th	<10	****	1	2	1	1	0.94	0.57	0.78	85.0	<0.5	1.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.9	5.2	43	2.8	1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ct No. NC-0	Xylenes (ne/L)	(mAdd)	9'0>	i	1	9.0>	1	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.0	<0.5	<0.5
Blue Rock Project No. NC-003	Ethylbenzene (us/L)	67,840	<0.3	1	1	<0.3	1	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	40.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	40.5	<0,5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<-0.5	<0.5	<0.5	<0.5
B	Toluene	(radial)	<0.3	1	1	40.3	1	1	<0.5	<0.5	40.5	40.5	40.5	40.5	<0.5	40.5	40.5	<0.5	40.5	<0.5	<0.05	<0.5	40.5	40.5	40.5	5005	40.5	40.5	40.5	40.5	<0.5	<0.5	40.5	<0.5	40.5	40.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	40.5	40.5	<0.5
	Benzene	(MS) F)	0.4	1	1	<0.3	1	ı	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	TPHg.	(MA)	050	1	1	95	-	1	080	05>	050	080	080	05>	<\$0	05>	<50	05>	<50	050	<\$0	<50	0\$0	<50	0\$0	050	<50	0\$0	- 050	080	050	<\$0	<\$0	050	05>	0\$0	080	\$0 \$0	080	05>	08>	<50	050	08	080
	GWE	(near)	93.43	92.53	95.05	94.42	94.71	95.21	95.28	93.98	95.94	9.63	9.85	9.55	10.55	10.95	12.86	13,44	11.03	10.36	12.93	11.24	11.08	12.31	12.96	12.38	11.45	12.23	7.09	7.88	7.71	19.6	9.84	11.05	11.31	10.16	6.07	11.15	10.66	9.95	10.78	11.04	11.00	10.42	10.71
	HdS (feet)	fixer	0.00	00'0	0.00	0000	0.00	0.00	0.00	0.00	00'0	0.00	0.00	0.00	0.00	00'0	0.00	0.00	0.00	0.00	000	000	0.00	0.00	0.00	000	0.00	0.00	000	000	000	0000	0.00	000	0.00	000	0000	0000	0.00	000	0.00	0.00	0.00	0.00	0.00
	WTG	(IICH)	7.07	7.97	5.45	80'9	5.79	\$20	5.22	6.52	7.56	4.96	4.74	5.04	7.42	7.02	5.11	4.53	6.94	197	5.04	6.73	68'9	99'5	5.01	5.59	6.52	5.74	81.8	4.39	4.56	5.97	5.80	4.59	4.33	5.48	6.57	4.49	4.98	8.69	4.86	4.60	4.64	5.22	4.93
	TOC	(neer)	100.50	100.50	100.50	100.50	100.50	100.50	100.50	100.50	100.50	14,59	14.59	14.59	17.97	17.97	17.97	17.97	17.97	17.97	17.97	17.97	17.97	17.97	17.97	17.97	17.97	17.97	12.27	12.27	12.27	15.64	15.64	15.64	15.64	15.64	15.64	15.64	15.64	15.64	15.64	15.64	15.64	15.64	15.64
	Sample	Dane	9/11/00	10/16/00	11/16/00	12/12/00	1/22/01	2/16/01	3/8/01	10/9/9	10/4/6	10/91/11	2/8/02	5/3/02	8/29/02	11/14/02	2/11/03	5/7/03	8/4/03	11/3/03	3/8/04	5/17/04	8/2/04	11/1/04	2/3/05	502/05	8/3/05	11/4/05	11/16/01	2/8/02	5/3/02	8/29/02	11/14/02	2/11/03	5/7/03	8/4/03	11/3/03	378/04	5/17/04	8/2/04	11/1/04	2/3/05	502/05	8/3/05	11/4/05
	Well	(Agente	MW4		Screen	3-20																							MW-5		Screen	3.20													

Table 3 GROUNDWATER ELEVATIONS AND ANALYTICAL DATA

Former Cash Oil Arcata 421 J Street Arcata, California

Blue Rock Project No. NC-003

Well	Sample	TOC	DTW	SPH	GWE	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	DIPE	ETBE	TAME	Methanol	Ethanol	Lead	DO
Name	Date	(feet)	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(jig/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/
MW-6	11/16/01	11.41	4.51	0.00	6.90	<50	<0.5	<0.5	<0.5	<0.5	0.90	<5	<0.5	<0.5	<0.5	<50	<5	***	
	2/8/02	11.41	4.15	0.00	7.26	<50	<0.5	<0.5	< 0.5	<0.5	< 0.5	<5	<0.5	<0.5	< 0.5				***
Screen	5/3/02	11.41	4.13	0.00	7.28	<50	<0.5	<0.5	< 0.5	< 0.5	< 0.5	<5	<0.5	<0.5	< 0.5		1000		
3'-20'	8/29/02	14.78	5.36	0.00	9.42	<50	< 0.5	< 0.5	< 0.5	< 0.5	0.68	<5	< 0.5	< 0.5	< 0.5		***	990	
	11/14/02	14.78	5.19	0.00	9.59	<50	<0.5	< 0.5	< 0.5	<0.5	1.0	<5	<0.5	<0.5	< 0.5		***		
	2/11/03	14.78	4.16	0.00	10.62	<50	<0.5	< 0.5	< 0.5	<0.5	0.80	<5	< 0.5	< 0.5	< 0.5		***		-
	5/7/03	14.78	3.90	0.00	10.88	<50	<0.5	< 0.5	< 0.5	< 0.5	0.60	<5	< 0.5	< 0.5	<0.5	- 100	***	100	
	8/4/03	14.78	4.90	0.00	9.88	<50	<0.5	< 0.5	< 0.5	<0.5	0.65	<5	<0.5	<0.5	< 0.5		***	***	-
	11/3/03	14.78	6.11	0.00	8.67	<50	<0.5	< 0.5	<0.5	< 0.5	1.5	<5	< 0.5	< 0.5	< 0.5		***		
	3/8/04	14.78	4.08	0.00	10.70	<50	<0.5	< 0.5	< 0.5	< 0.5	0.51	<5	< 0.5	< 0.5	< 0.5		400	200	0.1
	5/17/04	14,78	4.42	0.00	10.36	<50	<0.5	< 0.5	< 0.5	<0.5	0.60	<5	<0.5	< 0.5	< 0.5		***		0.8
	8/2/04	14.78	5.07	0.00	9.71	<50	<0.5	<0.5	< 0.5	<0.5	0.72			***			***		1.5
	11/1/04	14.78	4.32	0.00	10.46	<50	< 0.5	< 0.5	< 0.5	< 0.5	2.3				100		444	***	1.3
	2/3/05	14.78	4.15	0.00	10.63	<50	<0.5	< 0.5	< 0.5	<0.5	0.68		***	***			***	***	2.3
	5/2/05	14.78	4.19	0.00	10.59	<50	<0.5	< 0.5	< 0.5	< 0.5	0.56			***	***				0.6
	8/3/05	14.78	4.60	0.00	10.18	<50	< 0.5	< 0.5	< 0.5	<0.5	0.62		***	***		***		***	0.
	11/4/05	14.78	4.34	0.00	10.44	<50	<0.5	<0.5	< 0.5	<0.5	1.0			***	***		***		1.3
MW-7	11/16/01	11.91	5.19	0.00	6.72	<50	<0.5	< 0.5	<0.5	<0.5	<0.5	<5	<0.5	< 0.5	<0.5	<50	<5	***	-
	2/8/02	11.91	4.67	0.00	7.24	<50	<0.5	<0.5	<0.5	< 0.5	<0.5	<5	< 0.5	<0.5	<0.5		888		-
Screen	5/3/02	11.91	5.06	0.00	6.85	<50	<0.5	< 0.5	< 0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5		200	***	
3'-20'	8/29/02	15.28	6.20	0.00	9.08	<50	<0.5	<0,5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5			***	
	11/14/02	15,28	5.83	0.00	9.45	<50	<0.5	< 0.5	<0.5	<0.5	<0.5	<5	<0.5	< 0.5	<0.5	100	100	***	
	2/11/03	15.28	5.12	0.00	10.16	<50	<0.5	< 0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5		***		
	5/7/03	15.28	4.75	0.00	10.53	<50	<0.5	< 0.5	<0.5	<0.5	< 0.5	<5	<0.5	<0.5	<0.5		***	***	
	8/4/03	15.28	5.77	0.00	9.51	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5		***	-	
	11/3/03	15.28	6.84	0.00	8.44	<50	<0.5	< 0.5	<0.5	<0.5	< 0.5	<5	<0.5	<0.5	<0.5		1000	***	- 44
	3/8/04	15.28	4.96	0.00	10.32	<50	<0.5	< 0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5				0.1
	5/17/04	15.28	5.23	0.00	10.05	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5		100	***	0.0
	8/2/04	15.28	6.06	0.00	9.22	<50	<0.5	<0.5	<0.5	<0.5	<0.5	***	200	***		***	***	***	1.6
	11/1/04	15.28	5.26	0.00	10.02	<50	<0.5	<0.5	<0.5	<0.5	<0.5			***			***		1.3
	2/3/05	15.28	4.97	0.00	10.31	<50	<0.5	< 0.5	<0.5	<0.5	< 0.5	440		200	000	***	***	***	2.:
	5/2/05	15.28	5.01	0.00	10.27	<50	<0.5	<0.5	<0.5	<0.5	<0.5		***	***			***	****	0.5
	8/3/05	15.28	5.50	0.00	9.78	<50	<0.5	<0.5	<0.5	<0.5	<0.5			***	***		***		0.5
	11/4/05	15.28	5.07	0.00	10.21	<50	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	- 1		- 1			0.
					MCL		1	150	300	1,750	13								
			3	Taste & ode	or threshold	5	***	42	29	1.7	***								
			NCR	WQCB Cle	anup Goals	<50	0.5	42	29	17	5								

Notes:

TOC: Top of well casing surveyed to established benchmark.

DTW: Depth to water as referenced to top of casing.

SPH: Separate phase hydrocarbon on top of groundwater.

GWE: Groundwater elevation as referenced to benchmark.

μg/L = micrograms per liter = parts per billion = ppb

MCL: maximum contaminant level, a Federal drinking water standard

<###: Not detected in concentrations exceeding the indicated laboratory detection limit</p>

DO: Dissloved oxygen collected using YSI meter (downhole measurement)

TPHg: Total petroleum hydrocarbons as gasoline by Method 5030/8260B

MTBE: Methyl tertiary butyl ether by Method 8260B

TBA: Tertiary butyl alcohol by Method 8260B

DIPE: Di isopropyl ether by Method \$260B

ETBE: Ethyl tertiary butyl ether by Method 8260B

TAME: Tertiary amyl methyl ether by Method 8260B

Lead: Dissolved lead by EPA Method 200.9

NCRWQCB: North Coast Region Water Quality Control Board

Page: 1 of 2 Project: NC-3

_	OF BOE	UNG:				*	DRILLING CONTRACTOR:	BORING DIAMETER:	CLIENT/LOCATION:	
				STORE		и/	Fisch Environmental	1.5 inches	Clyde Harvey, 421	J St., Arcata, CA
		DB					DRILL RIG OPERATOR:	BORING DEPTH:	SCREEN SLOT SIZE:	DRILLING DATE:
					J.S.E.		Dave	35 feet	NA	5/8/06
		200	ANUPY				DRILL RIG TYPE:	WELL DEPTH:	WELL MATERIAL:	FILTER PACK:
		DB-2					Geoprobe	NA	NA	NA
				Samoa I	Blvd.		WELL SEAL / BOREHOLE FILL	4	PLANNED USE:	LOGGED BY:
NOT TO SCALE	.58	ESS - 2 DE 1		- 11			Neat Cement		Sampling	James Linderman
NO			SAM	PLING	5	. w	SAMPLING METHOD:		MONITORING INST:	APPROVED BY:
WELL CONSTRUCTION DETAIL			7	RY	OVM READING (PPM)	GRAPHIC LOG OR USCS CODE	Discrete sampler		Thermo 580B	Brian Gwinn, PG
J. ISTRI	WATER LEVEL	FE	INTERVAL	RECOVERY	d RE	VPHIC	FIRST ENCOUNTERED WATER	DEPTH:	STATIC WATER DEPTH	
CON	WA	DEPTH (FEET)	IN	REC	OVO (PP)	38	10 feet		See notes below.	
Boring filled with neat cement.	\(\sum_{\pi}\)	- 1 - 2 - 3 - 4 - 5 - 6 - 7 - 6 - 7 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 25 - 25 - 25 - 25 - 25 - 25	•		0		Asphalt & Baserock. Elastic Clayey SILT (clay; moist. Silty CLAY w/ Sand (coarse sand; ~40% silt	CL); gray; low to m	to high plasticity; ~4	9%
		- 26 - - 27 - - 28 - - 29 -	*	*			coarse sand; ~40% silt	moist to wet.		

BLUE ROCK ENVIRONMENTAL, INC.

ELD LOCATIO	N OF BOR	ING:					DRILLING CONTRACTOR:	BORING DIAMETER:	CLIENT/LOCATION:	
-						N	Fisch Environmental	1.5 inches	Clyde Harvey, 42	I J St., Arcata, CA
		D8-1	STORE			., /	DRILL RIG OPERATOR:	BORING DEPTH:	SCREEN SLOT SIZE:	DRILLING DATE:
		•	1				Dave	35 feet	NA	5/8/06
		CANOPY	E	18.			DRILL RIG TYPE:	WELL DEPTH:	WELL MATERIAL:	FILTER PACK:
	284						Geoprobe	NA	NA	NA
_	•					_	WELL SEAL / BORING FILL:		PLANNED USE:	LOGGED BY:
TO SCALE			Sam	noa Blvd.			Neat Cement		Sampling	James Linderman
7	1		SAM	PLING	-		SAMPLING METHOD:		MONITORING INST:	APPROVED BY:
OIL					DING	907	Discrete sampler		Thermo 580B	Brian Gwinn, PG
I I	8 -1	=-	RVAI	VER	REA	SCS	FIRST ENCOUNTERED WATER	DEPTH-	STATIC WATER DEPTH	
WELL CONSTRUCTION DETAIL	WATER	DEPTH (FEET)	INTERVAL	RECOVERY	OVM READING (PPM)	GRAPHIC LOG OR USCS CODE	10 feet		See notes below.	
POD		10		-	-	1111	10 100		Dec notes below.	
4		- 31 -					CHE, CLAY (CL):		uline less to medica	a alasticitus 400/
Mr.						11111	Silty CLAY (CL); oral silt; dry to moist.	nge-brown; gray mo	ttiing; low to mediun	n piasticity; ~40%
Boring filled with neat cement.		- 32 -				1111	one, dry to moist.			
はな		- 33 -				1111				
nea		- 34 -				1111				
B	DRY				0	1111				
		- 35 -				1111				
		- 36 -	*	*		11111				
		- 37 -					Groundwater Elevati			
							Discrete sample scree			
		- 38 -					Discrete sample scree	en depth 32'-36', dry	, no groundwater in	hole.
		- 39 -								
		- 40 -								
						-				
		- 41 -								
		- 42 -								
		- 43 -								
		- 44 -								
		**				-				
		- 45 -								
		- 46 -								
		- 47 -								
						-				
		- 48 -								
		- 49 -								
		- 50 -								
		- 51 -								
		- 52 -								
	-	- 53 -								
		- 54 -								
		- 55 -								
		- 56 -								
		- 57 -								
		- 58 -								
		- 59 -								
						-				
		- 60 -								

LD LOCATION	N OF BOR	ING:					DRILLING CONTRACTOR:	BORING DIAMETER:	CLIENT/LOCATION:	
				TORL		/u	Fisch Environmental	1.5 inches	Clyde Harvey, 42	I J St., Arcata, CA
		DB-1		- SAGE			DRILL RIG OPERATOR:	BORING DEPTH:	SCREEN SLOT SIZE:	DRILLING DATE:
					182		Dave	35 feet	NA	5/8/06
		CA	UNOPY		-		DRILL RIG TYPE:	WELL DEPTH:	WELL MATERIAL:	FILTER PACK:
		DB-2					Geoprobe	NA	NA	NA
				Samoa	DI. J		WELL SEAL / BOREHOLE FILE		PLANNED USE:	LOGGED BY:
NOT TO SCALE				Samoa	DIVU.		Neat Cement		Sampling	James Linderman
Z			SAM	PLING	0	98	SAMPLING METHOD:		MONITORING INST:	APPROVED BY:
OCTIO			7	RY	OVM READING (PPM)	GRAPHIC LOG OR USCS CODE	Discrete sampler		Thermo 580B	Brian Gwinn, PG
L STRI	WATER	EE	INTERVAL	RECOVERY	M RE.	APHIO	FIRST ENCOUNTERED WATE	R DEPTH:	STATIC WATER DEPTH	I - DATE:
WELL CONSTRUCTION DETAIL	WA	DEPTH (FEET)	N	REC	99	88	10 feet		See notes below.	
		_ 1 -					Asphalt & Baserock.			
Boring filled with neat cement.	Ž	- 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 10 - 10 - 10 - 10 - 10 - 10					Elastic Clayey SILT ~40% clay; moist.	MH); dark brown; r	nedium to high plasti	icity;
Bor		- 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 20 - 21 - 22 - 23 - 23 - 12 - 23 - 12 - 23 - 12 - 12		•	0		Silty CLAY w/ Sand ~15% coarse sand; ~			city;
		- 23 · - 24 · - 25 · - 26 · - 27 · - 28 · - 29 · -		\ \	0		Silty CLAY (CL); da moist.	rk brown; low to me	dium plasticity; ~40°	% silt;

LD LOCATION	OF BOR	NG:		1	1		DRILLING CONTRACTOR:	BORING DIAMETER:	CLIENT/LOCATION:	
-				7		N	Fisch Environmental	1.5 inches	Clyde Harvey, 42	J St., Arcata, CA
		191	STORE			,	DRILL RIG OPERATOR:	BORING DEPTH:	SCREEN SLOT SIZE:	DRILLING DATE:
			7	2	6		Dave	35 feet	NA	5/8/06
		CANOPY	CI	-			DRILL RIG TYPE:	WELL DEPTH:	WELL MATERIAL:	FILTER PACK:
	DB-2]				Geoprobe	NA	NA	NA
							WELL SEAL / BORING FILL:		PLANNED USE:	LOGGED BY:
TO SCALE			Samo	oa Blvd.			Neat Cement		Sampling	James Linderman
No			SAMP	LING	9	O O	SAMPLING METHOD:		MONITORING INST:	APPROVED BY:
UCT			AL	RY	ADIN	07.01	Discrete sampler		Thermo 580B	Brian Gwinn, PG
WELL CONSTRUCTION DETAIL	WATER	DEPTH (FEET)	INTERVAL	RECOVERY	OVM READING (PPM)	GRAPHIC LOG OR USCS CODE	FIRST ENCOUNTERED WATER	DEPTH:	STATIC WATER DEPTH	- DATE:
COL	W/ LE	DEI (FE	Z	RE	99	55	10 feet		See notes below.	
-						11111				
Boring filled with neat cement.		- 31 -				11111	Silty CLAY (CL); redo	lish-brown; gray mo	ttling; low to medius	m plasticity; ~40%
nen		- 32 -				1111	silt; dry to moist.			
ring filled wi neat cement.		- 33 -				11111				
ing						1111				
Bor	DEL	- 34 -				11111				
	DRY	- 35 -			0	1111				
		- 36 -	*	*		11111				
							Groundwater Elevation	ons:		
		- 37 -					Discrete sample scree	n depth 23'-26'. gro		
		- 38 -					Discrete sample scree			
		- 39 -				-				
		- 40 -								
		- 41 -								
		- 42 -								
		- 43 -								
		- 44 -				-				
		- 45 -								
		- 46 -								
		- 47 -								
		- 48 -				-				
		- 49 -								
		- 50 -								
		- 51 -								
		- 52 -				-				
		- 53 -								
		- 54 -								
		- 54 - - 55 -								
		- 55 - - 56 -								
		- 55 - - 56 - - 57 -								
		- 55 - - 56 -								
		- 55 - - 56 - - 57 -								

UNIFIED SOIL CLASSIFICATION SYSTEM - VISUAL CLASSIFICATION OF SOILS (ASTM D-2488)

MAJOR DIVISIONS		GROUP SYMBOL		GROUP NAME	DESCRIPTION
		00000	GW	Well-graded gravel Well-graded gravel with sand	Well-graded gravels or gravel-sand mixtures, little or no fines.
COARSE GRAINED SOILS	GRAVEL AND	00000	GP	Poorly-graded gravel Poorly-graded gravel with sand	Poorly-graded gravels or gravel sand mixture, little or no fines.
	GRAVELLY	00000	GM	Silty gravel Silty gravel with sand	Silty gravels, gravel-sand-silt mixtures.
			GC	Clayey gravel Clayey gravel with sand	Clayey gravels, gravel-sand-clay mixtures.
			sw	Well-graded sand Well-graded sand with gravel	Well-graded sands or gravelly sands, little or no fines.
	SAND		SP	Poorly-graded sand Poorly-graded sand with gravel	Poorly-graded sands or gravelly sands, little or no fines.
	SANDY		SM	Silty sand Silty sand with gravel	Silty sands, sand-silt mixtures.
			sc	Clayey sand Clayey sand with gravel	Clayey sands, sand-clay mixtures.
	SILTS		ML	Silt; Silt with sand; Silt with gravel Sandy silt; Sandy silt with gravel Gravelly silt; Gravelly silt with sand	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity.
FINE	CLAYS		CL	Lean clay, Lean clay with sand; Lean clay with gravel Sandy lean clay, Sandy lean clay with gravel Gravelly lean clay, Gravelly lean clay with sand	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.
SOILS	ELASTIC SILTS		МН	Elastic silt; Elastic silt with sand; Elastic silt with gravel Sandy elastic silt; Sandy elastic silt with gravel Gravelly elastic silt; Gravelly elastic silt with sand	Inorganic silts, micaceous or diatamaceous fine sandy or silty soils, elastic silts.
	AND CLAYS		СН	Fat clay, Fat clay with sand; Fat clay with gravel Sandy fat clay, Sandy fat clay with gravel Gravelly fat clay; Gravelly fat clay with sand	Inorganic clays of high plasticity, fat clays.
HIGHLY ORGANIC SOILS			OL/OH	Organic soil; Organic soil with sand; Organic soil with gravel Sandy organic soil; Sandy organic soil with gravel Gravelly organic soil; Gravelly organic soil with sand	Organic silts and organic silt- clays of low plasticity. Organic clays of medium to high plasticity.
			Pt	Peat	Peat and other highly organic soils.

WELL CONSTRUCTION EXPLANTION

SOIL BORING NOTES:

Blow count represents the number of blows of a 140-lb hammer falling 30 inches per blow required to drive a sampler through the last 12 inches of an 18-inch penetration.

No warranty is provided as to the continuity of soil strata between borings. Logs represent the soil section observed at the boring location on the date of drilling only.

- S = Sampler sank into medium under the weight of the hammer (no blow count)
- P = Sampler was pushed into medium by drilling rig (no blow count) NR = No Recovery

	SANDS & GRAVELS	BLOWS/FT
Ī	VERY LOOSE	0 - 5
1	LOOSE	5 - 12
1	MED. DENSE	12 - 37
1	DENSE	37 - 62
	VERY DENSE	OVER 62

ELS	BLOWS/F1	J
3	0 - 5	1
	5 - 12	ı
	12 - 37	ı
	37 - 62	ı
5	OVER 62	ı

7		
	SILTS & CLAYS	BLOWS/FT
7	SOFT	0 - 5
	FIRM	5 - 10
	STIFF	10 - 20
	VERY STIFF	20 - 40
	HARD	OVER 40

Approximate stabilized water level

Approximate first encountered water level

NOTE: all percentages of lithological composition presented on the soil boring logs are approximate. They represent the best estimates of a Blue Rock geologist based on visual inspection in the field.

SOIL BORING LOG AND WELL CONSTRUCTION DIAGRAM **LEGEND**

Date: 5/15/2006

Scott Ferriman Blue Rock Environmental, Inc. 535 3rd Street, Suite 100 Eureka, CA 95501

Subject: 6 Soil Samples and 3 Water Samples

Project Name: Former Cash Oil Arcata

Project Number: NC-3

Dear Mr. Ferriman.

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed.

Kiff Analytical is certified by the State of California (# 2236). If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Project Number: NC-3

Matrix : Soil

Lab Number : 49913-01

Report Number: 49913

Date: 5/15/2006

Sample Date :5/8/2006

Sample: DB-1-15'

Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/9/2006
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/9/2006
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/9/2006
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/9/2006
Methyl-t-butyl ether (MTBE)	0.26	0.0050	mg/Kg	EPA 8260B	5/9/2006
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	5/9/2006
Toluene - d8 (Surr)	93.8		% Recovery	EPA 8260B	5/9/2006
4-Bromofluorobenzene (Surr)	98.0		% Recovery	EPA 8260B	5/9/2006

Sample : DB-1-25'

Matrix : Soil

Lab Number: 49913-02

Sample Date :5/8/2006

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/9/2006
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/9/2006
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/9/2006
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/9/2006
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/9/2006
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	5/9/2006
Toluene - d8 (Surr)	93.9		% Recovery	EPA 8260B	5/9/2006
4-Bromofluorobenzene (Surr)	99.1		% Recovery	EPA 8260B	5/9/2006

Approved By:

Joel Kiff

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Project Number: NC-3

Sample: DB-1-35'

Matrix: Soil

Lab Number: 49913-03

Report Number: 49913

Date: 5/15/2006

Sample Date :5/8/2006

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/9/2006
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/9/2006
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/9/2006
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/9/2006
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/9/2006
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	5/9/2006
Toluene - d8 (Surr)	95.4		% Recovery	EPA 8260B	5/9/2006
4-Bromofluorobenzene (Surr)	102		% Recovery	EPA 8260B	5/9/2006

Sample: DB-2-15'

Matrix: Soil

Lab Number: 49913-04

Sample Date :5/8/2006

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/10/2006
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/10/2006
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/10/2006
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/10/2006
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/10/2006
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	5/10/2006
Toluene - d8 (Surr)	103		% Recovery	EPA 8260B	5/10/2006
4-Bromofluorobenzene (Surr)	105		% Recovery	EPA 8260B	5/10/2006

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Project Number: NC-3

Matrix: Soil

Lab Number: 49913-05

Report Number: 49913

Date: 5/15/2006

Sample Date :5/8/2006

Sample : DB-2-25'

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/10/2006
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/10/2006
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/10/2006
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/10/2006
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/10/2006
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	5/10/2006
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	5/10/2006
4-Bromofluorobenzene (Surr)	101		% Recovery	EPA 8260B	5/10/2006

Sample : DB-2-35'

Matrix : Soil

Mathad

Lab Number: 49913-06

Sample Date :5/8/2006

Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/10/2006
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/10/2006
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/10/2006
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/10/2006
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/10/2006
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	5/10/2006
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	5/10/2006
4-Bromofluorobenzene (Surr)	104		% Recovery	EPA 8260B	5/10/2006
4-Bromofluorobenzene (Surr)	104		% Recovery	EPA 8260B	5/10/2

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Joel Kiff

Project Number: NC-3

Report Number: 49913

Date: 5/15/2006

Sample : HP-1-25'

Matrix: Water

Lab Number: 49913-07

Sample Date :5/8/2006

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	5/11/2006
Toluene	< 0.50	0.50	ug/L	EPA 8260B	5/11/2006
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	5/11/2006
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	5/11/2006
Methyl-t-butyl ether (MTBE)	2.5	0.50	ug/L	EPA 8260B	5/11/2006
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	5/11/2006
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	5/11/2006
4-Bromofluorobenzene (Surr)	102		% Recovery	EPA 8260B	5/11/2006

Sample: HP-2-25'

Matrix: Water

Lab Number: 49913-08

Sample Date :5/8/2006

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	5/10/2006
Toluene	< 0.50	0.50	ug/L	EPA 8260B	5/10/2006
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	5/10/2006
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	5/10/2006
Methyl-t-butyl ether (MTBE)	0.61	0.50	ug/L	EPA 8260B	5/10/2006
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	5/10/2006
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	5/10/2006
4-Bromofluorobenzene (Surr)	107		% Recovery	EPA 8260B	5/10/2006

Approved By:

Joel Kiff

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Project Number: NC-3

Matrix : Water Lab Number : 49913-09

Report Number: 49913

Date: 5/15/2006

Sample Date :5/8/2006

Sample: HP-3-25'

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	5/10/2006
Toluene	< 0.50	0.50	ug/L	EPA 8260B	5/10/2006
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	5/10/2006
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	5/10/2006
Methyl-t-butyl ether (MTBE)	1.3	0.50	ug/L	EPA 8260B	5/10/2006
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	5/10/2006
Toluene - d8 (Surr)	- d8 (Surr) 100		% Recovery	EPA 8260B	5/10/2006
4-Bromofluorobenzene (Surr)	Bromofluorobenzene (Surr) 112		% Recovery	EPA 8260B	5/10/2006

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Joel Kiff

Date: 5/15/2006

QC Report : Method Blank Data

Project Name: Former Cash Oil Arcata

Project Number: NC-3

Parameter	Measured Value	Method Reportin Limit	ng Units	Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/9/2006
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/9/2006
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/9/2006
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/9/2006
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/9/2006
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	5/9/2006
Toluene - d8 (Surr)	101		96	EPA 8260B	5/9/2006
4-Bromofluorobenzene (Surr)	99.2		%	EPA 8260B	5/9/2006
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/10/2006
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/10/2006
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/10/2006
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/10/2006
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	5/10/2006
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	5/10/2006
Toluene - d8 (Surr)	101		%	EPA 8260B	5/10/2006
4-Bromofluorobenzene (Surr)	101		%	EPA 8260B	5/10/2006
Benzene	< 0.50	0.50	ug/L	EPA 8260B	5/11/2006
Toluene	< 0.50	0.50	ug/L	EPA 8260B	5/11/2006
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	5/11/2006
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	5/11/2006
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	5/11/2006
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	5/11/2006
Toluene - d8 (Surr)	101		%	EPA 8260B	5/11/2006
4-Bromofluorobenzene (Surr)	99.4		%	EPA 8260B	5/11/2006

Parameter	Measured Value	Method Report Limit		Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	5/10/2006
Toluene	< 0.50	0.50	ug/L	EPA 8260B	5/10/2006
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	5/10/2006
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	5/10/2006
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	5/10/2006
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	5/10/2006
Toluene - d8 (Surr)	101		%	EPA 8260B	5/10/2006
4-Bromofluorobenzene (Surr)	109		%	EPA 8260B	5/10/2006

Approved By: Joel Kiff

Joel Kiff

Date: 5/15/2006

Project Name: Former Cash Oil Arcata

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Number: NC-3

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spiked Sample Value	Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.		Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Benzene	49911-01	< 0.0050	0.0658	0.0662	0.0606	0.0646	mg/Kg	EPA 8260B	5/9/06	92.1	97.6	5.84	70-130	25
Toluene	49911-01	< 0.0050	0.0658	0.0662	0.0588	0.0627	mg/Kg	EPA 8260B	5/9/06	89.4	94.7	5.75	70-130	25
Tert-Butanol	49911-01	< 0.0050	0.329	0.331	0.270	0.290	mg/Kg	EPA 8260B	5/9/06	82.2	87.7	6.48	70-130	25
Methyl-t-Butyl Ethe	er 49911-01	<0.0050	0.0658	0.0662	0.0608	0.0656	mg/Kg	EPA 8260B	5/9/06	92.4	99.1	6.93	70-130	25
Benzene	49913-04	<0.0050	0.0394	0.0400	0.0349	0.0356	mg/Kg	EPA 8260B	5/10/06	88.8	88.9	0.177	70-130	25
Toluene	49913-04	< 0.0050	0.0394	0.0400	0.0314	0.0324	mg/Kg	EPA 8260B	5/10/06	79.9	80.9	1.29	70-130	25
Tert-Butanol	49913-04	< 0.0050	0.197	0.200	0.180	0.192	mg/Kg	EPA 8260B	5/10/06	91.5	95.9	4.76	70-130	25
Methyl-t-Butyl Ethe	er 49913-04	<0.0050	0.0394	0.0400	0.0389	0.0399	mg/Kg	EPA 8260B	5/10/06	98.8	99.7	0.856	70-130	25
Benzene	49913-07	<0.50	40.0	39.9	39.9	39.6	ug/L	EPA 8260B	5/11/06	99.6	99.3	0.320	70-130	25
Toluene	49913-07	< 0.50	40.0	39.9	40.0	39.3	ug/L	EPA 8260B	5/11/06	100	98.4	1.63	70-130	25
Tert-Butanol	49913-07	< 5.0	200	200	206	199	ug/L	EPA 8260B	5/11/06	103	99.5	3.31	70-130	25
Methyl-t-Butyl Ethe	er 49913-07	2.5	40.0	39.9	43.5	43.0	ug/L	EPA 8260B	5/11/06	102	102	0.922	70-130	25
Benzene	49908-04	<0.50	40.0	40.0	36.4	36.0	ug/L	EPA 8260B	5/10/06	90.9	90.0	1.07	70-130	25
Toluene	49908-04	< 0.50	40.0	40.0	36.5	35.9	ug/L	EPA 8260B	5/10/06	91.3	89.8	1.59	70-130	25
Tert-Butanol	49908-04	<5.0	200	200	191	198	ug/L	EPA 8260B	5/10/06	95.4	99.2	3.94	70-130	25
Methyl-t-Butyl Ethe	er 49908-04	2.3	40.0	40.0	35.6	33.1	ug/L	EPA 8260B	5/10/06	83.0	76.8	7.83	70-130	25

Approved By: Joe Kiff

KIFF ANALYTICAL, LLC

2795 2nd St, Suite 300 Davis, CA 95616 530-297-4800

Date: 5/15/2006

Project Name: Former Cash Oil Arcata

QC Report : Laboratory Control Sample (LCS)

Project Number: NC-3

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Benzene	0.0399	mg/Kg	EPA 8260B	5/9/06	102	70-130
Toluene	0.0399	mg/Kg	EPA 8260B	5/9/06	99.7	70-130
Tert-Butanol	0.200	mg/Kg	EPA 8260B	5/9/06	95.9	70-130
Methyl-t-Butyl Ether	0.0399	mg/Kg	EPA 8260B	5/9/06	106	70-130
Benzene	0.0399	mg/Kg	EPA 8260B	5/10/06	99.2	70-130
Toluene	0.0399	mg/Kg	EPA 8260B	5/10/06	101	70-130
Tert-Butanol	0.200	mg/Kg	EPA 8260B	5/10/06	97.4	70-130
Methyl-t-Butyl Ether	0.0399	mg/Kg	EPA 8260B	5/10/06	97.3	70-130
Panzana	40.0	ua/I	EPA 8260B	5/11/06	101	70-130
Benzene	40.0 40.0	ug/L	EPA 8260B	5/11/06	101	70-130
Toluene Tert-Butanol	200	ug/L	EPA 8260B	5/11/06	103	70-130
	40.0	ug/L	EPA 8260B	5/11/06	103	70-130
Methyl-t-Butyl Ether	40.0	ug/L	EPA 0200B	5/11/06	103	70-130
Benzene	40.0	ug/L	EPA 8260B	5/10/06	89.7	70-130
Toluene	40.0	ug/L	EPA 8260B	5/10/06	90.4	70-130
Tert-Butanol	200	ug/L	EPA 8260B	5/10/06	92.0	70-130
Methyl-t-Butyl Ether	40.0	ug/L	EPA 8260B	5/10/06	81.8	70-130

Approved By:

Joe Kiff

3249 Fitzgerald Road Rancho Cordova, CA 95742

May 16, 2006

CLS Work Order #: CPE0329

COC #: 49913

Troy Turpen KIFF Analytical 2795 Second St. Suite 300 Davis, CA 95616

Project Name: Former Cash Oil Arcata

Enclosed are the results of analyses for samples received by the laboratory on 05/09/06 15:20. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

2- Times

CA DOHS ELAP Accreditation/Registration number 1233

Page 1 of 4

05/16/06 08:51

KIFF Analytical 2795 Second St. Suite 300

Davis, CA 95616

Project: Former Cash Oil Arcata

Project Number: NC-3

CLS Work Order #: CPE0329

Project Manager: Troy Turpen

COC #: 49913

KIFF Analytical LLC			Dav	ris, (A 9	d Stre 15616 17,480 17,480	10	Suite	300)	R	3. and	249 ho	Fitze Corde	gerald	A 957	42	OC#	45	9913	Pi	age <u>1</u>	of 1			
Project Contact (Hardcopy	or PDF to):		E	EDF Report? _X_Yss _No									1	Ch	ain-o	f-Cus	tody	Reco	rd an	d An	alysis	Reque	est			
Troy Turpen Company/Address: Kiff Analytical, LLC			Mission	repling Company Log Code: BRSF										Analysis Request												
Phone No.:	FAX No.:		Glo	Slobal ID: T0602300231														T								
Project Number: NC-3	P.O. No.: 49913	3		DF Deliverable to (Email Address): box@kiffanalytical.com																		900	Only			
Project Name. Former Cash Oil Ar	cata		100	mail address:										Content								May 16, 2006	Lab Use Only			
Project Address:	Sampli	ing		Co	ntair	101	P	res	erva	tive	N	tatri	X	e Co								May	For Li			
Sample Designation	Date	Time	Glass Jar	Pely	Amber		HCI	HNO3	Na28203	MONE	WATER	SOL		Moisture								-				
DB-1-25'	5/8/06	1115	1	-	<		T	T	-	X	>	X		X								X				
DB-1-35'	5/8/06	1135	1							X		X		X								X				
DB-2-25'	5/8/06	0850	1							X		X		X								X				
DB-2-35'	5/8/06	0910	1							X		Х		Х								X				
											-															
											-															
														25 11												
Roinfushed by Aher		Date J	Tin	4		ived b									Re	marks:										
Relinquished by:		Date	Tie	me	Rece	lived b	4.																			
Relinquished by:		5-9-6	Tie 15	ne)~	Rucky	MARI	4	0	ory:			0	4		81	to: A	ccour	nts Pa	yable							

Page 2 of 4

05/16/06 08:51

KIFF Analytical

Project: Former Cash Oil Arcata

2795 Second St. Suite 300 Davis, CA 95616

Project Number: NC-3 Project Manager: Troy Turpen CLS Work Order #: CPE0329

COC #: 49913

Conventional Chemistry Parameters by APHA/EPA Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DB-1-25' (CPE0329-01) Soil	Sampled: 05/08/06 11:15	Received:	05/09/06	15:20					
% Moisture	20	1.0	%	1	CP03546	05/10/06	05/10/06	SM 2540B	11.19
DB-1-35' (CPE0329-02) Soil	Sampled: 05/08/06 11:35	Received:	05/09/06	15:20					
% Moisture	22	1.0	%	1	CP03546	05/10/06	05/10/06	SM 2540B	
DB-2-25' (CPE0329-03) Soil	Sampled: 05/08/06 08:50	Received:	05/09/06	15:20					
% Moisture	35	1.0	%	1	CP03546	05/10/06	05/10/06	SM 2540B	
DB-2-35' (CPE0329-04) Soil	Sampled: 05/08/06 09:10	Received:	05/09/06	15:20					
% Moisture	21	1.0	%	1	CP03546	05/10/06	05/10/06	SM 2540B	

Page 3 of 4 05/16/06 08:51

KIFF Analytical

Davis, CA 95616

Project: Former Cash Oil Arcata

2795 Second St. Suite 300

Project Number: NC-3

CLS Work Order #: CPE0329

Project Manager: Troy Turpen

COC #: 49913

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch CP03546 - General Preparation

Blank (CP03546-BLK1) Prepared & Analyzed: 05/10/06

% Moisture ND 1.0 %

Page 4 of 4

05/16/06 08:51

KIFF Analytical

Project: Former Cash Oil Arcata

2795 Second St. Suite 300

Project Number: NC-3

CLS Work Order #: CPE0329

Davis, CA 95616

Project Manager: Troy Turpen

COC #: 49913

Notes and Definitions

DET

Analyte DETECTED

ND

Analyte NOT DETECTED at or above the reporting limit

NR

Not Reported

dry

Sample results reported on a dry weight basis

RPD

Relative Percent Difference

KIFF ()	2795 2r Davis, (Lab: 5 Fax: 5	CA 95	5616 97.48	300	300							SR	IG#	/ La	b No).	_	49	19	13)				_					Page	e	_ of	
Project Contact (Hardcopy or PDF	To):		Cali	iforni	a ED	Rep	ort?			K)	Yes		No					C	hai	in-c	of-C	ust	tod	y R	ecc	ord	ar	ıd.	An	aly:	sis l	Requ	est	
Company / Address:	-		San	nplin	g Cor	npan	y Log	g Co	ode:						\neg							Ar	aly	sis I	Req	ues	t						TAT	
707-441-1936	x#:	14	Glo	Jal II	D: Diveral	02	2.3	O(O Z	23	31	-				el @ 5.0 ppb						8260B)		08)	(Water)								12 hr	
Project #: P.O. Ar Project Name: Project Address:			1 :	500	He Sign	Ble	er	٥حا	ke	nv	. (0	00		_	4	8021 level	0					EDB-EPA	260B)	PA 8260B)	Drinkin		1	8015M)					24 hr	For Lab Use Only
Former Cash oil Ar	rath			Sa	the	_										EPA	0.5 ppb			60B)	82608)	& 1,2 EC	PA 8	list (E	524.2	(EPA 8015M)		T			0)			l g
Y21 Jo Street	Sam	pling	Н	C	ontain	er	+	T	rese	erva	tive	+	Ma	atrix	\dashv	B) per	0	9)	82608)	PA 82	(EPA 82	CAB	a) suo	F	(EPA	PA A		(EPA	(EPA 6010)	(STLC)	MN		48 hr	5
Arcata CA			VOA													(EPA 8260B)	MTBE (EPA 8260B)	(EPA 8260B)	TPH Gas (EPA 8%	5 Oxygenates (EPA 8260B)	enates (E)	Lead Scav.(1,2 DCA	Volatile Halocarbons (EPA 8260B)	Volatile Organics Full List (EPA	Volatile Organics (EPA 524.2 Drinking Water)	Diesel (5		I PH as Motor Oil	ad (EPA	Lead (ST	Maisture		72 hr	
Sample Designation	Date	Time	40 ml V	Sleeve	Poly	Tedlar		豆	ENO.	None		Water		Air		MTBE (MTBE (BTEX (TPH G	5 Oxyge	7 Oxygenates	Lead Sc	Volatile	Volatile	Volatile	TPH as Diasal	and a	LFT dia	Total Lead		8		₩k	
DB-1-15'	5/8/06	1100		X									X				Х	X	X														X	01
DB-1-25'	1	1115	П	X		П	Т	T		Т			X	П			X	X	X										T		X		X	02
DB-1-35'		1135		X		П	Т	T		T	T		X	П			X	X	X						Г	T	T	T	T		X		X	03
DB-2-15'		840		X		П	T	T	T	T			X	П	\neg		X	X	X						Г	T	T	T	T				X	04
DB-2-25'		850	П	X	T	П	1	1	1	T			X	П			X	X	X						Г	T	T	T	1		X		X	05
DB-2-35'		910	П	X	T	П	7	T	T	T	T		X	П			X	X	X						T	T	T	T	T	\Box	X		X	06
HP-1-25'		1155	3	1		П	7	ХĪ	1	T		X			┪		X	X	X						T	T	T	T	1	\exists			X	67
HP-2-25'		945	-			\Box		χÌ	1	1	1	V					X	Ż	X								1	1	1				X	08
HP-3-25'	1	1300	3	I	İ			Ì	1	1	1	X					X	X	X							İ	İ	1	1				X	09
Relinquished by: Suidernon		Date	10		ime	Rece	bevie		_	1	1			Ц				Rem	arks								_	1	_					
		5/8/	100	_					e	0	L	X																						
Relinquished by:		Date		+	īme	Rece	bevie	by:	_	_	_	_	_	_	_	-														75				
Relinquished by:		Data		1		D							_				_	Bill to	0:															
Trainquistred by.		Date	0/0			Rece	bevi	by L	apor	ator	у.			1	cil	14		To	mp °	0		nitial	_	ab I	Use	Onl	y:	Sa	_	_	Peceip	m. ID #	Coolea	t Present
		05090	P	1	113	ha	48	57	1	1	Her	-	6	A	N	177	7		.4	0		am		0	50		6	+	Time	\rightarrow			Yes	
Distribution: White - Lab; Pink - Originator				_		-	_		_	_	_	1			_	_	_		-	_	7		_	_	-	-		-	-					

Rev: 051805